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Abstract. We study the energy levels of non-interacting electrons confined to move in two-dimensional
billiard regions and having a spin-dependent dynamics due to a finite Rashba spin splitting. The free
space Green’s function for such Rashba billiards is constructed analytically and used to find the area and
perimeter contributions to the density of states, as well as the corresponding smooth counting function.
We show that, in contrast to systems with spin-rotational invariance, Rashba billiards always possess a
negative energy spectrum. A semi-classical analysis is presented to interpret the singular behavior of the
density of states at certain negative energies for circular Rashba billiards. Our detailed analysis of the spin
structure of circular Rashba billiards reveals a finite out-of-plane spin projection for electron eigenstates.

PACS. 73.21.La Quantum dots – 71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller
effect – 05.45.Mt Quantum chaos; semiclassical methods – 03.65.Sq Semiclassical theories and applications

1 Introduction

Spin-dependent phenomena in semiconductor nanostruc-
tures have attracted great current interest [1,2]. Intriguing
effects can arise in non-magnetic systems due to the pres-
ence of spin-orbit coupling. Structural inversion asymme-
try in semiconductor heterostructures has been shown [3]
to give rise to a spin splitting of the same type as was
discussed in an early paper by Rashba [4]. Its tunabil-
ity by external gate voltages [5–7] has motivated the
theoretical design of a spin-controlled field-effect tran-
sistor [8]. Novel spin properties arise from the interplay
between Rashba spin splitting and further confinement
of two-dimensional electrons in quantum wires [9–12],
rings [13,14], or dots [15–21]. Spin-orbit coupling has also
been shown to affect the statistics of energy levels and
eigenfunctions as well as current distributions [22,23]. The
interplay between spin-orbit coupling and external mag-
netic fields was analyzed theoretically using random ma-
trix theory [24].

In this work, we study Rashba billiards, i.e., non-
interacting ballistic electrons moving in finite two-
dimensional (2D) regions whose dynamics is affected by
the Rashba spin-orbit coupling. In the one-band effective-
mass approximation, the Hamiltonian with Rashba split-
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ting in 2D is given by [25]

Ĥ = Ĥ0 +
α

�
Û, (1a)

Ĥ0 =
p2

x + p2
y

2m∗ (1b)

Û = σxpy − σypx, (1c)

where σx, σy are Pauli matrices. This Hamiltonian governs
the electron dynamics inside the billiard with Dirichlet
boundary conditions at the perimeter (see Ref. [18]). The
Rashba spin-orbit coupling strength α can be conveniently
measured in terms of a wave-number scale kso = m∗α/�

2,
The spin-precession length defined as π/kso can be tuned
independently of the system size [5–7]. Furthermore, the
tunability of the Rashba spin-orbit coupling strength is a
convenient tool to induce changes of the billiard’s energy
spectrum without applying external magnetic fields.

One of our central quantity of interest is the density
of states (DOS) �(E) =

∑
n δ(E − En) and the count-

ing function N(E) =
∑

n Θ(E − En) for Rashba billiards
with energy levels En. Here δ(x) and Θ(x) are the Dirac
delta function and the Heaviside function, respectively.
The density of states and the counting function of nor-
mal billiards (without spin-orbit coupling, i.e., for α = 0)
have been extensively studied in the literature. They can
be derived from the Green’s function of the system. The
smooth counting function N̄(E) is given by the so-called
Weyl formula [26–28], which is an asymptotic series of the
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exact counting function N(E), in terms of the energy E.
A good introduction to this problem is given by Baltes
and Hilf [27], and recently by Brack and Bhaduri [28],
and many applications can be found in references [29–34].

We have derived the first two leading terms in the Weyl
formula of the smooth counting function N̄(E) for arbi-
trary shapes of Rashba billiards. Our approach is based
on the image method of Berry and Mondragon [35] de-
veloped for neutrino billiards, which have two-component
wave functions and in this respect are rather similar to the
Rashba billiards discussed here. We will show that the first
term of N̄(E) is proportional to the area of the billiard,
while the second one is proportional to the length of the
perimeter of the billiard. Moreover, we find that the den-
sity of states is singular at the bottom of the spectrum.
This singular behavior occurs independently of the bil-
liard’s shape and is most striking if the Rashba parameter
is large.

The circular Rashba billiards is the simplest of con-
fined systems that can be treated analytically [36–38].
Following the approach outlined above, we also calculate
the smooth counting function N̄(E) for circular Rashba
billiards, and besides its first two leading terms (which
coincide with the results derived for arbitrary shapes of
Rashba billiards) we give higher-order correction terms.
Our analytical result for N̄(E) and that obtained from
the numerically calculated exact energy levels are in per-
fect agreement.

In the absence of any lateral confinement, the energy
dispersion for the Rashba Hamiltonian (1) splits into two
branches [25]:

E(kx, ky) =
�

2

2m∗
[
(|k| ± kso)

2 − k2
so

]
, (2)

where k = (kx, ky). The spin splitting is a consequence
of broken spin-rotational invariance. The spin of energy
eigenstates, which are labeled by a 2D vector k, is po-
larized perpendicularly to k [25]. Hence, no common spin
quantization axis for single-electron states can be defined
in the presence of spin-orbit coupling. As can be seen, in
the range 0 < k < 2kso, one branch has negative energies
bounded from below by −∆so ≡ −�

2k2
so/(2m∗).

Similarly, a laterally confined 2D system in the pres-
ence of Rashba type spin-orbit interactions has also a neg-
ative energy spectrum. In this paper, we present interest-
ing features of the energy spectrum for circular Rashba
billiards, focusing especially on its negative energy eigen-
values. We have found that for a circular shape, the den-
sity of states has additional singularities at negative ener-
gies. We obtain analytic results for their positions. Their
corresponding eigenspinors have a finite spin projection in
the direction perpendicular to the billiard plane, which is
the direct result of imposing hard-wall boundary condi-
tions.

Results presented in this article extend work reported
in reference [39]. Its organisation is as follows. The prop-
erties of arbitrarily shaped Rashba billiards are discussed
in Section 2. We present an algebraic expression for the
free-space Green’s function in the presence of Rashba spin-
orbit coupling in Section 2.1. Subsequently, in Section 2.2,

the first two leading terms of the Weyl formula are de-
rived. Using the eigenstates presented in Section 2.3 in
the absence of lateral confinement, we derive an alterna-
tive expression for the free-space Green’s function in polar
coordinates in Section 2.4. The circular Rashba billiards
are discussed in Section 3. An analytical formula for the
Green’s function is derived in Section 3.1 for this case,
while the derivation of the smooth counting function is
presented in Section 3.2, including its comparison with
the numerically calculated result. For negative energies
the counting function is calculated in Section 3.3, while
the spin structures is discussed in Section 3.4. Finally, our
results are summarized and conclusions given in Section 4.

2 Arbitrary shapes of Rashba billiards

In this section we derive the smooth part of the density
of states and the smooth part of the counting function,
i.e., the two leading terms in the Weyl formula [26–28]
for arbitrary shapes of Rashba billiards. These smooth
functions are obtained by averaging the exact DOS and
counting function over a small energy range around an
energy E.

The exact density of states �(E) expressed in terms of
the retarded Green’s function (see e.g., [28]) is given by

�(E) = − 1
π

lim
η→0+

Im Tr G(E + iη, r, r′), (3)

where the trace means the limit r → r′, integra-
tion of r over the area of the billiard, and the trace
in spin space. The exact Green’s function G(z, r, r′)
is the position representation of the Green operator
Ĝ(z) = (z − Ĥ)

−1
, which in addition, satisfies the bound-

ary conditions. Then, the exact counting function is de-
fined by N(E) =

∫ E

−∞ �(E′)dE′.
Usually, the exact Green’s function satisfying the

boundary conditions is not known. However, one can al-
ways write the exact Green’s function as a sum of the so-
called free-space Green’s function and a correction with
which the exact Green’s function satisfies the boundary
conditions. The free-space Green’s function G∞(E, r, r′)
is the Green’s function of the infinite system and does not
satisfy the boundary conditions at the boundary of the bil-
liards. In this paper, we calculate the free-space Green’s
function G∞(E, r, r′) for the Rashba Hamiltonian (1), and
in case of circular Rashba billiards, the exact Green’s func-
tion which satisfies the Dirichlet boundary conditions at
the boundary of the billiards.

The first term in the Weyl formula, called area term,
can be obtained by replacing the exact Green’s function
with the free-space Green’s function G∞(E, r, r′) in equa-
tion (3). It is always proportional to the area of the bil-
liard. Higher-order terms in the Weyl formula are the cor-
rections to the area term taking into account the exact
Green’s function. The smooth part of the first correction
term is called perimeter term because it is proportional to
the length of the perimeter of the billiard.



A. Csordás et al.: Rashba billiards 191

2.1 Free-space Green’s function for Rashba billiards

All our subsequent calculations are crucially based on the
knowledge of the free-space Green’s function G∞(E, r, r′)
for Rashba billiards. In this subsection, we present its
derivation.

At a given energy E, two propagating modes exist
whose wave vectors can be found from the dispersion re-
lation (2):

|k| = k± = |k ∓ kso|, where k =

√
2m∗E

�2
+ k2

so. (4)

Using the identities for the Pauli matrices one can easily
show that Û2 = p2

x + p2
y and the Rashba Hamiltonian can

be written as

Ĥ =
Û2

2m∗ +
α

�
Û.

The free-space Green operator Ĝ∞(E) = (E − Ĥ)
−1

cor-
responding to the Rashba Hamiltonian reads then

Ĝ∞(E) =
2m∗

�2

[

k̃2(E) −
(

Û

�
+ kso

)2]−1

, (5)

where k̃ =
√

2m∗E/�2 + k2
so. Here E can be a complex

number. Using the operator identity

(
λ2 − Â2

)−1

=
1
2λ

[
(
λ + Â

)−1

+
(
λ − Â

)−1
]

, (6)

where λ is a scalar and Â is an operator, one can decom-
pose Ĝ∞(E) as

Ĝ∞(E) =
m∗

k̃�2

[(

k̃− +
Û

�

)−1

+

(

k̃+ − Û

�

)−1]

, (7)

where k̃± = k̃ ∓ kso. Now using the operator identity
(
λ ± Â

)−1

=
(
λ ∓ Â

)(
λ2 − Â2

)−1

, one finds

Ĝ∞(E) =
m∗

�2

1
k̃

[(

k̃− − Û

�

)(

k̃2
− − p2

�2

)−1

+

(

k̃+ +
Û

�

)(

k̃2
+ − p2

�2

)−1
]

. (8)

The retarded Green’s function in position representation
is given by

G∞(E, r, r′) = 〈r|Ĝ∞(E + iη)|r′〉, (9)

where E is a real number and η → 0+. The two terms in
equation (8) in position representation involve two func-
tions:

〈r|
(

k̃2
± − p2

�2

)−1

|r′〉. (10)

After a simple limiting procedure one can show that

k̃2
+(E + iη) = k2

+(E) + sgn(E) iη, (11a)

k̃2
−(E + iη) = k2

−(E) + iη, (11b)

where k± are given by equation (4). The two functions
in (10) can be evaluated by the following identities (see
e.g., [28]):

〈r|
(

k2 − p̂2

�2
± iη

)−1

|r′〉 =

⎧
⎨

⎩

− i
4H

(1)
0 (k|r − r′|),

i
4H

(2)
0 (k|r − r′|),

(12)

where H
(1,2)
0 (x) are the Hankel functions of zero order,

and k > 0.
Finally, using equations (8–12) we can easily find

G∞(E, r, r′) =
−i

4
m∗

�2

1
k

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(
k− − Û

�

)
H

(1)
0 (k−|r − r′|)

+
(
k+ + Û

�

)
H

(1)
0 (k+|r − r′|)

]
,

for E > 0,

[(
k− − Û

�

)
H

(1)
0 (k−|r − r′|)

−
(
−k++ Û

�

)
H

(2)
0 (k+|r−r′|)

]
,

for E < 0.

(13)
We note that, for negative energies E, the retarded
Green’s function contains incoming circular waves besides
outgoing waves.

2.2 Area and perimeter terms of the density of states

First, consider the area term of the Weyl formula. Now,
in equation (3) we replace the exact Green’s function
G(E, r, r′) by the free-space Green’s function G∞(E, r, r′)
given by equation (13). The trace of the operator Û is zero
since Û is an off-diagonal matrix in the spin space. Then,
it is easy to see that the leading term in the DOS becomes

�area(E) =
A
2π

2m∗

�2

1
k

{
k, for E > 0,

kso, for E < 0,
(14)

where A is the area of the Rashba billiard. Therefore, the
integration of the DOS yields the counting function:

Narea(E) =
A
π

2m∗

�2

{E
2 + ∆so, for E > 0,

√
∆so

√
E + ∆so, for − ∆so<E< 0.

(15)
It follows directly from equation (15) that, for negative
energies, the DOS shows a 1/

√
E + ∆so singularity at the

bottom of the spectrum E → −∆so. The area term (15)
can alternatively be derived from the classical phase-space
integral in the underlying classical approach. However,
the classical dynamics of electrons in Rashba billiards is
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described by two Hamiltonians [40], which are reminis-
cent of the two dispersion branches (2). The constant-
energy surfaces in phase space are different for the two
Hamiltonians, yielding different contributions to the clas-
sical phase-space integral. This simple calculation also
leads to equation (15).

For arbitrary shapes of Rashba billiards, we can also
determine the perimeter term of the DOS and the count-
ing function. This term can be derived from the generaliza-
tion of the image method of reference [30] using only the
free space Green’s function. The actual calculation is very
much similar to that applied by Berry and Mondragon [35]
for neutrino billiards. The Dirichlet boundary conditions
can be approximately satisfied by regarding the boundary
as straight and using the approximate Green’s function

G(r, r′) ≈ G∞(r, r′) + Gi(r, r′), where (16a)
Gi(r, r′) ≡ −G∞(r, ri), (16b)

and ri is the image of r′ on the boundary outside
the billiard. Obviously G(r, r′) is still a solution of the
Schrödinger equation in the variable r. To calculate the
trace in (3) of Gi(r, r′) we define r = (n, s) and r′ =
(n, s + σ), where n and s are the coordinates of r perpen-
dicular to and along the boundary. Of course n < 0 since
r is inside the billiard and the limit r → r′ in the trace
corresponds to σ → 0. Now, |r − ri| =

√

(2n)2 + σ2 and
the correction to the DOS, i.e., �perim(E) coming from
Gi(r, r′) can be written as

�perim(E) = − 1
π

lim
η→0+

Im Tr Ĝi(E + iη, r, r′)

= − 1
2π

m∗

�2

1
k

∫ L

0

ds

∫ 0

−∞
dn

× [k−J0(k−2n) + k+J0 (k+2n)], (17)

where the factor 2 of the trace in the spin space has already
been included. Using the integral

∫∞
0

J0(ax)dx = 1/a with
a > 0 we obtain

�perim(E) = − L
4π

2m∗

�2

1
k

, (18)

valid for all energies E > −∆so. Here L is the length of
the perimeter of the billiard. Finally, the integration of
the DOS yields the counting function:

Nperim(E) = − L
2π

√
2m∗

�2

√
E + ∆so, (19)

valid also for all energies E > −∆so. The minus sign is a
consequence of Dirichlet boundary conditions.

In summary, the first two terms in the Weyl for-
mula for arbitrary shapes of Rashba billiards reads as
N̄(E) = Narea(E) + Nperim(E). Note that for zero spin–
orbit coupling, N̄(E) coincides with the previously derived
result for 2D billiards [27–29,31,32] (apart from a factor
2 due to spin).

2.3 Eigenstates for infinite systems

In this section the eigenvalues and eigenstates of the free-
particle Rashba Hamiltonian given by equation (1) are
calculated in polar coordinates. These results will be used
in Section 2.4 to rewrite the free-space Green’s function
(13) in a form which is suitable for calculations in case of
circular Rashba billiards presented in Section 3.

The Hamiltonian (1) can be rewritten in polar coordi-
nates r = (r, ϕ) and we have Ĥ = Ĥ0 + α

�
Û , where

Ĥ0= − �
2

2m∗

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)

, (20a)

Û

�
=

⎛

⎝
0 e−iϕ

(
∂
∂r − i

r
∂

∂ϕ

)

−eiϕ
(

∂
∂r + i

r
∂

∂ϕ

)
0

⎞

⎠. (20b)

Since the Hamiltonian Ĥ commutes with the total angular
momentum operator Ĵz = −i�∂ϕ + �

2 σz , the stationary
Schrödinger equation Ĥ|χ〉 = E|χ〉 can be solved using
the following ansatz [18,19]

〈 r |χm〉 =

(
C1Zm(kr)eimϕ

C2Zm+1(kr)ei(m+1)ϕ

)

, (21)

where m is an integer, k > 0 and Zm(x) can be any of
the Bessel functions Jm(x), Ym(x), and H

(1,2)
m (x). With

the help of the well-known recursion relations of Bessel
functions

Z ′
m(x) ± m

x
Zm(x) = ±Zm∓1(x), (22)

one can show that the constants C1 and C2 satisfy
(

k2 2kkso

2kkso k2

)(
C1

C2

)

=
2m∗E

�2

(
C1

C2

)

. (23)

Hence for a given k the two eigenenergies E± are

E±(k) =
�

2

2m∗
[
(k ± kso)

2 − k2
so

]
. (24)

Since the eigenvalues of the Schrödinger equation are in-
dependent of the chosen coordinate systems the above
eigenenergies should be the same as those given in equa-
tion (2), which is indeed the case when k = |k|. The cor-
responding two non-trivial solutions for C±

1 and C±
2 are

given by

C±
1 /C±

2 = ±1, for E > 0,

C±
1 /C±

2 = −1, for − ∆so < E < 0.
(25)

For a given E the two positive solutions of equation (24)
for k are k± given by equation (4).
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G∞(E, r, r′) = − im∗

4�2k

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
k−H1

− + k+H1
+ −e−iϕ

(
∂
∂r

− i
r

∂
∂ϕ

)
(H1

− − H1
+)

eiϕ
(

∂
∂r

+ i
r

∂
∂ϕ

)
(H1

− − H1
+) k−H1

− + k+H1
+

⎞

⎠, E > 0,

⎛

⎝
k−H1

− + k+H2
+ −e−iϕ

(
∂
∂r

− i
r

∂
∂ϕ

)
(H1

− + H2
+)

eiϕ
(

∂
∂r

+ i
r

∂
∂ϕ

)
(H1

− + H1
+) k−H1

− + k+H2
+

⎞

⎠, −∆so < E < 0,

(28)

We are now in a position to construct different eigen-
states using the Bessel and Hankel functions. The eigen-
spinors regular at the origin are

〈 r|χ±
m〉 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( ±Jm(k±r)

Jm+1(k±r)eiϕ

)

eimϕ, E > 0,

( −Jm(k±r)

Jm+1(k±r)eiϕ

)

eimϕ, E < 0.

(26)

To derive the free-space Green’s function in polar coordi-
nates we shall also use solutions which are singular at the
origin:

〈 r|h±
m〉 =

(
±H

(1)
m (k±r)

H
(1)
m+1(k±r)eiϕ

)

eimϕ, E > 0, (27a)

〈 r|h+
m〉 =

(
−H

(2)
m (k+r)

H
(2)
m+1(k+r)eiϕ

)

eimϕ, E < 0, (27b)

〈 r|h−
m〉 =

(
−H

(1)
m (k−r)

H
(1)
m+1(k−r)eiϕ

)

eimϕ, E < 0. (27c)

2.4 Free-space Green’s function in polar coordinates

Using (13) and (20b) the free-space retarded Green’s func-
tion in the two energy ranges becomes

see equation (28) above

where we used the notations H1,2
± ≡ H

(1,2)
0 (k±|r− r′|). In

the off-diagonal elements the differentiations with respect
to r and ϕ can be carried out by introducing a new variable
ρ = r − r′. Then, for E > 0 our simple algebraic method
yields the same result that was derived by Walls et al. [42]
using a different approach. However, they do not present
any explicit form for E < 0.

In our previous paper [39] we used another form for the
free-space Green’s function (although as a lack of space it
was not published there) in order to determine exactly
the Green’s function for circular Rashba billiards. In this
approach differentiations with respect to r and ϕ in the
off-diagonal elements were performed using the addition
theorem of the Bessel functions [43]

H
(1,2)
0 (|r−r′|) =

∞∑

m=−∞
H(1,2)

m (r)Jm(r′)eim(ϕ−ϕ′), r > r′

(29)

and the recursion relations (22). Then, for the free-space
Green’s function in polar coordinates for r > r′ we obtain
a rather compact form in terms of the spinors defined
in (26, 27):

G∞(r, r′)= c

∞∑

m=−∞

[
k+〈r|h+

m〉〈χ+
m|r′〉 + k−〈r|h−

m〉〈χ−
m|r′〉

]
,

(30)
where c = −im∗/(4�

2k). We shall use this form in Sec-
tion 3.1.

3 Circular Rashba billiards

We now consider a circular Rashba billiard of radius R.
The eigenstates of the system can be written as a linear
combination of the regular eigenspinors given by equa-
tion (26) and the linear combination coefficients are cho-
sen such that the eigenstates satisfy the Dirichlet bound-
ary conditions. The straightforward calculation yields the
following secular equation:

Jm(k+R)Jm+1(k−R) + sgn(E)Jm(k−R)Jm+1(k+R) = 0,
(31)

where m is an integer. For each quantum number m the
solutions of this equation for E give the energy levels of the
circular Rashba billiards. The same secular equation was
derived in references [36–38]. This equation is invariant
under the change m → −m − 1 (Kramers degeneracy).
Formal solutions of the secular equation having zero wave
vectors k+ or k− are excluded since the corresponding
wave functions vanish everywhere inside the billiard (E =
0). Similarly, the formal solution at E = −∆so should also
be excluded.

Following the ideas of the systematic method of Berry
and Howls [32], we have calculated the first few leading
terms of the smooth counting function N̄(E). To do this
we need the exact Green’s function for circular Rashba
billiards which is calculated in the following subsection.

3.1 Green’s function for circular Rashba billiards

Boundary conditions for billiards requires that the Green’s
function should vanish at the boundary (i.e., if either r or
r′ is on the perimeter). The free-space Green’s function
(30) for a given energy usually does not vanish at the
boundary of the billiard. To fulfill the billiard boundary
conditions we look for the exact Green operator, as usual,
in the form of Ĝ = Ĝ∞ + ĜH , where the homogeneous
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Green’s function satisfies
(
E − Ĥ

)
ĜH = 0. The bound-

ary conditions for Ĝ are

G(r, r′) = G∞(r, r′) + GH(r, r′) = 0, for |r| = R,
(32)

where r′ is inside the billiard. Since the homogeneous
Green’s function ĜH satisfies the same Schrödinger equa-
tion as the regular solutions given by equation (26) one
can construct ĜH from these eigenstates as

ĜH =
∞∑

m=−∞

[
Am |χ+

m〉〈χ+
m| + Bm |χ−

m〉〈χ+
m|

+Cm |χ+
m〉〈χ−

m| + Dm |χ−
m〉〈χ−

m|
]
, (33)

where the constants Am, Bm, Cm, and Dm, in principle,
can be determined from the boundary conditions (32).
For arbitrary shapes of billiards it results in an infinite
set of linear equations for the constants. Fortunately, in
case of circular billiards the constants can be determined
analytically. Indeed, substituting equations (30) and (33)
into equation (32), and identifying the coefficients of the
eigenspinors 〈χ±

m|r′〉 one finds

Am 〈r|χ+
m〉 + Bm 〈r|χ−

m〉=−c k+ 〈r|h+
m〉, (34a)

Cm 〈r|χ+
m〉 + Dm 〈r|χ−

m〉=−c k− 〈r|h−
m〉, (34b)

where the eigenspinors are evaluated at |r| = R. These
equations, in fact, are four independent linear inhomoge-
neous equations for Am, Bm, Cm, and Dm since each eigen-
spinor is a two component vector. The solutions can be
easily obtained from the appropriate determinants formed
from the coefficients of equation (34), and are given by

Am = −c k+

Fm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣
∣
∣
∣
∣

H
(1)
m (k+R) −Jm(k−R)

H
(1)
m+1(k+R) Jm+1(k−R)

∣
∣
∣
∣
∣
, E > 0,

∣
∣
∣
∣
∣

−H
(2)
m (k+R) −Jm(k−R)

H
(2)
m+1(k+R) Jm+1(k−R)

∣
∣
∣
∣
∣
, E < 0,

(35a)

Dm = −c k−
Fm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣
∣
∣
∣
∣

Jm(k+R) −H
(1)
m (k−R)

Jm+1(k+R) H
(1)
m+1(k−R)

∣
∣
∣
∣
∣
, E > 0,

∣
∣
∣
∣
∣

−Jm(k+R) −H
(1)
m (k−R)

Jm+1(k+R) H
(1)
m+1(k−R)

∣
∣
∣
∣
∣
, E < 0,

(35b)

Bm = Cm =
2ic

πRFm
, where (35c)

Fm = Jm(k+R)Jm+1(k−R)+sgn(E)Jm(k−R)Jm+1(k+R).
(35d)

In equation (35c) we used the Wronskian relations for the
Bessel functions [43].

Finally, the analytical form of the exact retarded
Green’s function of circular Rashba billiards in polar co-
ordinates is a sum of the free-space Green’s function

G∞(r, r′) given by equations (28) or (30), and the homo-
geneous part GH(r, r′) = 〈r|ĜH |r′〉, where the operator
ĜH is given by equation (33) together with equation (35).

The eigenenergies of any billiards can be obtained from
the poles of the retarded Green’s function Ĝ. For circular
Rashba billiards the poles of Ĝ are the poles of ĜH , i.e.,
the zeros of Fm. As can be seen it yields the same secular
equation (31) derived independently, and thus it provides
one check point for the Green’s function ĜH .

3.2 The smooth part of the density of states

To calculate the DOS and the counting function for circu-
lar Rashba billiards we adopt the ideas of the systematic
method of Berry and Howls [32]. The exact Green opera-
tor of the system is Ĝ = Ĝ∞ + ĜH . The first term of the
density of states (3) is the contribution from Ĝ∞ in the
trace of Ĝ. The result is given in (14), while the leading
term in the counting function N(E) is given by (15).

The correction terms of the DOS can be obtained from
the trace of ĜH given by equation (33). This involves the
limit r → r′, the trace of the 2 by 2 matrix GH(r, r) (trace
over spinor indices) and the integration over the area of
the billiard. After a straightforward calculation we found

Tr ĜH = 2π

∞∑

m=−∞

∫ R

0

rdr

[

J2
m(k+r)(Am−1 + Am)

+ J2
m(k−r)(Dm−1 + Dm)

+2Jm(k+r)Jm(k−r)

{
(Bm−1 − Bm), E > 0

(Bm−1 + Bm), E < 0

]

. (36)

In the series with terms Am−1 the summation index m
has been shifted by one to have the same radial integral
as that in the series for Am, and the same trick was done
for series containing Bm−1, Cm−1 and Dm−1.

The radial integrals in (36) can be performed analyt-
ically [44]. To calculate the density of states one needs
to evaluate Tr ĜH at complex energies E + iη. To this
end we follow the approach originally applied by Stewart-
son and Waechter [31], and later for example Berry and
Howls [32], and the Bessel functions of the first kind Jm(z)
and H

(1,2)
0 (z) are converted to the modified Bessel func-

tions Im(z) and Km(z) by extending the energy E to the
complex plane. This is the so-called heat-kernel method.
However, in our case one has to be careful for negative
energies. It turns out that the parameters x, x+ and x−
depending on energy E (here E is real) and defined as

ix ≡ R k(E + iη), (37a)
ix+ ≡ sgn(E)R k+(E + iη), (37b)
ix− ≡ R k−(E + iη), (37c)
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are useful to convert the Bessel functions of the first kind
to the modified Bessel functions using the identities

Jm(iz) = imIm(z), (38a)

H(1)
m (iz)=

2
π

(−i)m+1Km(z), −π<arg z ≤ π

2
, (38b)

H(2)
m (−iz)=

2
π

im+1Km(z), −π

2
< arg z ≤ π. (38c)

After a tedious algebra the result of these transformations
in equation (36) can be written as

Tr ĜH(E + iη) =
m∗R2

�2x

∞∑

m=−∞
fm(E + iη), where

fm(E + iη) =

[

1 +
m2

x2
+

−
(

I ′m(x+)
Im(x+)

)2
]

x+Im(x+)

×Km(x+)+

[

1+
m2

x2−
−
(

I ′m(x−)
Im(x−)

)2
]

x−Im(x−)Km(x−)

−Pm(x+, x−)
2

[

1 +
m2

x2
+

−
(

I ′m(x+)
Im(x+)

)2

+ 1 +
m2

x2−

−
(

I ′m(x−)
Im(x−)

)2

− 4
x2

+−x2−

(

x+
I ′m(x+)
Im(x+)

−x−
I ′m(x−)
Im(x−)

)]

,

(39a)

and

Pm(x+, x−) =
1

I ′m(x+)
Im(x+)

+
I ′m(x−)
Im(x−)

− m

x+
− m

x−

+
1

I ′m(x+)
Im(x+)

+
I ′m(x−)
Im(x−)

+
m

x+
+

m

x−

. (39b)

Up to now the trace of GH for circular Rashba billiards
is exact. Note that the above mentioned transformations
result in the same form of Tr ĜH(E + iη) both for nega-
tive and positive energy E. Moreover, as a self-consistent
check, one can show that fm(E) becomes the same as
that in references [31,32], when the spin-orbit coupling
is zero, i.e., for x+ → x−. Indeed, in this limit, using
the L’Hospital’s rule and the Bessel differential equation
for Im, it can be shown that the factor multiplied by
Pm(x+, x−) in equation (39) is exactly zero, and the re-
maining terms can be rewritten in the same form as that
in references [31,32].

The next step is to replace the modified Bessel
functions in equation (39) by their uniform approxima-

tion [43,32]. Keeping only the leading terms we obtain

Tr ĜH =
m∗R2

h2x

∞∑

m=−∞

{
1
2

[
x+

m2 + x2
+

+
x−

m2 + x2−

]

+
1

x+ + x−

⎡

⎣1 − 2m2 + x2
+ + x2

−

2
√

(m2 + x2
+)(m2 + x2−)

⎤

⎦

⎫
⎬

⎭
. (40)

Note that the second term bracketed in square brackets is
zero when x+ → x−, and one finds the perimeter term of
the DOS for billiards with zero spin-orbit coupling from
the remaining terms. Taking into account the subsequent
terms in the uniform approximation provides a systematic
way to derive higher order terms for the trace of GH as in
reference [32] for normal circular billiards. However, with
non-zero spin-orbit coupling the calculations become more
cumbersome.

The summation over m in (40) can be rewritten using
the Poisson summation formula [28,45]

∞∑

m=−∞
fm =

∞∑

µ=−∞

∫ ∞

−∞
dmfm ei2πµm. (41)

Then, the Weyl series, i.e., the smooth part of the DOS,
following Berry and Howls [32], can be obtained by keep-
ing only the µ = 0-term in (41). Carrying out the limiting
process, η → 0 in the trace of GH given by equation (40),
and using the integral

∫ a

b

dz
2z2 − a2 − b2

√
(z2 − b2)(a2 − z2)

=

2(a + b)
[

E

(
a − b

a + b

)

− K

(
a − b

a + b

)]

, (42)

valid for 0 < b < a (E and K are the complete elliptic
integrals with the same definitions as in reference [44])
for integration over m, we obtain the contribution to the
smooth DOS coming from Tr ĜH . A tedious calculation
yields

�̄H(ε) = − 1
2
√

ε + εso
− √

εso δ(ε + εso)

− 1
π

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1√
ε+εso

[

E
(√

εso
ε+εso

)
− K

(√
εso

ε+εso

)
]

, ε > 0,

√
εso

ε+εso

[

E
(√

ε+εso
εso

)
− K

(√
ε+εso

εso

)
]

, ε < 0,

(43)

where the dimensionless energies ε = 2m∗ER2/�
2 and

εso = 2m∗∆soR
2/�

2 = k2
soR

2 have been introduced. The
first term is the contribution from the first and second
terms of equation (40), and it coincides with the perime-
ter term derived in equation (18) for arbitrary shapes of
Rashba billiards. The Dirac delta term and the terms con-
taining the complete elliptic integrals in (43) come from
the term involving brackets in (40).
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Fig. 1. (Color online) In panel (a) the exact counting func-
tion N(ε) (dashed line) and N̄(ε) (solid line) are shown for√

εso = ksoR = 70. The inset shows the enlarged portion of the
main figure close to the bottom of the spectrum. In panel (b)
the difference ∆N = N(ε) − N̄(ε) is plotted. In both panels
dimensionless energies ε = 2m∗ER2/�

2 are used.

Finally, including the contribution from Tr Ĝ∞, the in-
tegration of the DOS over E leads to the smooth counting
function N̄(ε) for Rashba billiards:

N̄(ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε+2εso
2 −√

ε + εso + 2
π

[
ε√

ε+εso
K
(√

εso
ε+εso

)

−√
ε + εso E

(√
εso

ε+εso

)]
, for ε > 0,

√
εso

√
ε + εso −√

ε + εso − 2
√

εso

π E
(√

ε+εso
εso

)
,

for − εso < ε < 0.
(44)

The first two terms (for both positive and negative en-
ergies) are the contribution from Ĝ∞. They are the area
and perimeter terms in the Weyl series and agree with
the results given by (15) and (19), respectively for arbi-
trary shapes of Rashba billiards. The terms containing the
complete elliptic integrals are corrections to the perimeter
term in case of circular billiards. We note that in a com-
pletely different context, namely for annular ray-splitting
billiards, a similar Weyl formula has been calculated [46]
involving also elliptic integrals.

We have compared the smooth counting function N̄(ε)
given by equation (44) with the exact counting function
N(ε) calculated from the energy levels obtained from the
secular equation (31) for different m. The relevant param-
eter characterizing a circular Rashba billiard of size R is
ksoR. Typical values for the spin–orbit–induced spin pre-
cession length Lso = π/kso are of the order of a few hun-
dred nanometers [1]. Taking R = 10 µm for a typical size
of quantum dots, the relevant parameter ksoR in Rashba
billiards can be as large as 70 (for example, with electric
field 107 V/m we find for GaAs, GaSb, InAs and InSb
that ksoR is 3.8, 17.8, 34.5, and 89.2, respectively [47].).
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Fig. 2. The difference ∆N between the exact counting func-
tion and N̄(ε) without the terms containing the elliptic in-
tegrals in equation (44) is plotted. The energy is scaled as
ε = 2m∗ER2/�

2 and ksoR = 70.
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Fig. 3. (Color online) The exact counting function N(ε) (solid
line) and the asymptotic counting function Nasymp(ε) given
by equation (48) (dashed line). The energy is scaled as ε =
2m∗ER2/�

2 and ksoR = 70.

Figure 1a shows the exact and the smooth counting func-
tions as functions of the dimensionless energy ε. There
are 6388 energy levels in the plotted energy range. To
see the difference between the two functions, in the inset
we plotted them close to the bottom of the energy spec-
trum. Figure 1b shows the difference ∆N = N(ε) − N̄(ε)
as a function of ε. The difference fluctuates around zero,
which means we did not miss levels (the mean value of
∆N is a sensitive test for missing levels, see e.g., Ref. [48]).
Without correction terms in equation (44) with elliptic in-
tegrals, ∆N would increase monotonically on average as
shown in Figure 2, and would predict a difference ≈27 in
the energy range plotted.

3.3 The counting function for negative energies

In Figure 3, the exact counting function is shown for neg-
ative energies near the bottom of the spectrum −εso. As
can be seen the exact N(ε) shows an additional rounded
step structure at certain energies ε∗n. This feature shows
up only for negative energies, although for larger energies
this is less pronounced. The step structure results in large
deviations ∆N at energies ε∗n and concomitant large peaks
in the DOS.
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Fig. 4. (Color online) The m dependence of the exact energy
levels (in units of �

2/2m∗R2) of circular Rashba billiards (sym-
bols) for a given n ranging from n = 1 to n = 7. The solid lines
are the curves obtained from the approximation of the exact
energy levels given by equation (45) as functions of m with the
corresponding n. Here ksoR = 70.

To see the reason for this behavior, it is useful to plot
the energy levels as functions of m, as shown in Figure 4.
The curves in the figure start almost horizontally at ε∗n,
n = 1, 2, . . . resulting in large peaks in the DOS at the
same energies. Using Debye’s asymptotic expression for
Bessel functions with large argument [43], we were able to
derive the energy dispersion in leading order:

εm,n = εso

[
(nπ

2 )2

εso − m2
− 1

]

(45)

valid only for negative energies. Figure 4 also shows the
comparison of the exact energy levels and their approxi-
mated m and n dependence given by equation (45). For
small m, n the above expression agrees excellently with
the numerics (e.g., ε0,1 is accurate up to 7 digits for
εso = 70). The smallest energy level in the spectrum of
the circular Rashba billiard is Emin = �

2/(2m∗R2) ε0,1
∼=

�
2/(2m∗)π2/(4R2) − ∆so.

We now derive an approximated expression for the
counting function using

Nasymp(ε) = 2
mmax∑

m=0

nmax∑

n=1

Θ(ε − εm,n), (46)

where εm,n are given by equation (45), the factor 2 takes
into account the Kramers degeneracy in m, and mmax =
[
√

εso ] and nmax = [(2
√

εso/π] are the largest m and n for
which εm,n is still negative. Here [·] stands for the integer
part. Applying the Poisson summation formula [28,45] in
the sum over m in equation (46) and keeping only the
non-oscillating term we find

Nasymp(ε) = 2
nmax∑

n=1

∫ mmax+ 1
2

− 1
2

Θ(ε − εm,n) dm

= 2
nmax∑

n=1

m∗(ε, n), (47)

where m∗(ε, n) is the solution of εm,n = ε for m at a given
ε and n. Thus, from equation (47), after some simple alge-
bra, we obtain the final form of the asymptotic counting
function in Debye’s approximation:

Nasymp(ε) = 2
√

εso

nmax∑

n=0

√
ε − ε∗n
ε + εso

Θ(ε − ε∗n), for ε < 0,

(48)
where ε∗n = ε0,n = (nπ

2 )2 − εso. The result is plotted to-
gether with the exact counting function in Figure 3. The
agreement is clearly visible near the bottom of the spec-
trum. However, it is an open question what semi-classical
picture can be associated to the content of equation (45).
A possible treatment in this direction may be the semi-
classical approach of references [40,41].

The density of states is the derivative of the count-
ing function N(E) with respect to E, therefore for cir-
cular Rashba billiards in the DOS square root types
singularities (van Hove type) appear at energies Esing

n =
�

2/(2m∗R2) ε∗n. This singular behaviour should be de-
tectable by measuring the differential conductance for
transport through a Rashba billiard.

3.4 The spin structures of the eigenstates

It is straightforward to obtain corresponding spinor eigen-
states and calculate their expectation value for the z com-
ponent of spin. Similar to the case of Rashba-split eigen-
states in rings [13], but in contrast to that of quantum
wires [10,11], it turns out to be finite.

The eigenstates of the Rashba billiards satisfying the
Dirichlet boundary conditions can be expressed with the
linear combination of the regular eigenspinors |χ±

m〉 given
by (26):

Ψm,n(r, ϕ) =
1√N

{

c+

(
Jm(k+r)

Jm+1(k+r) eiϕ

)

+ c−

( −Jm(k−r)
Jm+1(k−r) eiϕ

)}

eimϕ, (49)

where N is the normalization constant, the coefficients c±
satisfy

c+

c−
=

Jm(k−R)
Jm(k+R)

= −Jm+1(k−R)
Jm+1(k+R)

, (50)

and k± satisfy the secular equation (31) with energy lev-
els εm,n. Eigenstates given by equation (49) are valid for
εm,n > 0. In the opposite case, one should use the eigen-
spinor given in (26) for E < 0. Regarding the spin struc-
tures, it turns out that both cases (the positive and nega-
tive energy levels) can be treated at the same level if the
definitions for k± in (4) are modified as k± = k ∓ kso.
Therefore, hereafter we use these new definitions for k±.

The spin structure of the eigenstates in Rashba bil-
liards can be obtained by calculating the expectation val-
ues for spin components:

〈
σi

〉
m,n

=
∫ R

0

∫ 2π

0

rdrdϕΨ+
m,n(r, ϕ)σi Ψm,n(r, ϕ), (51)
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Fig. 5. The expectation values of
〈
σz

〉
m,n

as functions of

the angular quantum number m and eigenvalues εm,n for
ksoR = 70.

where i = x, y, z, and + denotes the transpose and the
complex conjugation of a spinor state. The integrand in
this equation is the spin density of σi. The eigenstates (49)
can be written in the form of

Ψm,n(r, ϕ) =

(
Ψ

(1)
m,n(r)

Ψ
(2)
m,n(r)eiϕ

)

eimϕ, (52)

and then it is easy to show that the spin density depends
only on r as

Ψ+
m,n(r)σz Ψm,n(r) =

∣
∣
∣Ψ (1)

m,n(r)
∣
∣
∣
2

−
∣
∣
∣Ψ (2)

m,n(r)
∣
∣
∣
2

, (53a)

Ψ+
m,n(r)σr Ψm,n(r) = 2Ψ (1)

m,n(r)Ψ (2)
m,n(r), (53b)

where σr = cos ϕσx+sin ϕσy is the in-plane radial compo-
nent of the spin. One can also show that the angular com-
ponent Ψ+

m,n σϕ Ψm,n of the in-plane spin density is exactly
zero, where σϕ = − sinϕσx + cosϕσy . Therefore, the in-
plane spin density at point r in the billiard is along the ra-
dial direction r [19]. This implies that the expectation val-
ues for in-plane spin is zero, i.e., 〈σx〉m,n = 〈σy〉m,n = 0.

Performing the integration (that can be carried out
analytically) in equation (51) for 〈σz〉m,n we find

〈
σz

〉
m,n

= −εm,n + εso√
εso

× 1
[

Jm(k−R)
Jm+1(k−R) + Jm+1(k−R)

Jm(k−R)

]
εm,n + (2m + 1)

√
εso

.

(54)

This is an exact analytic result for the expectation val-
ues of the z component of the spin for circular Rashba
billiards.

Figure 5 shows the expectation values of
〈
σz

〉
m,n

cal-
culated numerically from (54) for different angular quan-
tum number m and eigenvalues εm,n with a given Rashba
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Fig. 6. The maximum of the
〈
σz

〉
m,n

as functions of m and

Xso = ksoR.

coupling strength α. One can see from the figure that〈
σz

〉
m,n

has a peak at m = 0 and for eigenvalue εm,n close
to zero. We have studied how this peak value changes for
different Rashba coupling strength α. For each ksoR and
m the maximum of

〈
σz

〉
m,n

over the eigenvalues εm,n is
plotted in Figure 6. It is clear from the figure that the ex-
pectation values of

〈
σz

〉
m,n

is robust for different Rashba
coupling strength α.

For Rashba billiards, in weak magnetic field the en-
ergy levels of the Kramers doublets will be splitted by the
Zeeman effect. Using the first order perturbation valid for
weak field limit, i.e., when the cyclotron radius is much
larger than the size of the Rashba billiard, the values of
the Zeeman splitting is proportional to the expectation
values of

〈
σz

〉
m,n

. Thus, we believe that the significant
magnitude of the spin z component found from our nu-
merical results can be detectable experimentally.

4 Conclusions

Before concluding in this section we briefly summarize our
results not discussed in this paper on the statistics of en-
ergy levels, and highlight some open theoretical problems
in connection with Rashba billiards.

The Schrödinger equation (including boundary condi-
tions) for circular Rashba billiards is separable in polar
coordinates, thus integrable. Hence, the statistics of en-
ergy levels should be Poissonian (see e.g. Ref. [34]). Indeed,
we have found that the nearest-neighbor level-spacing dis-
tribution P (s) is Poissonian (not shown here). For other
shapes of Rashba billiards, spin-orbit coupling may de-
stroy integrability, in which case Random Matrix Theory
(RMT) predicts that the level statistics should be gov-
erned by the symplectic ensemble [34,49]. Note, however,
that some intermediate distribution (not described by
RMT) was found [23] for a rectangularly shaped billiard
with Dirichlet boundary conditions in the limit of small
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kso, reflecting the fact that a rectangular billiard is inte-
grable in the absence of SO coupling but non-integrable
when SO is finite.

We now list a few interesting open theoretical prob-
lems. The Weyl formula is essential to develop a periodic
orbit theory for Rashba billiards. (For normal billiards, see
Brack and Bhaduri’s book in Ref. [27,28], and a theory
in case of harmonically confined Rashba systems is given
in Ref. [41].) To get better insight into the dynamics of
Rashba billiard systems, one can develop a semiclassical
analysis used by Littlejohn and Flynn [40]. The Green’s
function method presented in this work would be a suit-
able starting point to calculate observables such as the
magnetization [50] or persistent currents [13] in Rashba
billiards.

Our calculation presented in this work remains valid
when only the Dresselhaus coupling is non-zero in the
Hamiltonian since with a unitary transformation the
Hamiltonian of the Dresselhaus billiard can be trans-
formed to that of the Rashba billiard. However, the semi-
classical analysis still remain a challenge for further re-
search when both the Dresselhaus and the Rashba cou-
pling constants are non-zero (except the case when they
are equal [51]).

We have so far left undiscussed any issues related to
disorder effects. While these warrant a separate thorough
study, a qualitative consideration of their impact is possi-
ble already within the framework of this article. For our
purposes, two types of disorder are relevant: (i) potential
disorder whose effect in the presence of Rashba spin split-
ting was considered, e.g., in reference [52], and (ii) ran-
domness in the structural inversion asymmetry that de-
termines the Rashba coefficient [53]. To be able to safely
neglect disorder of type (i), the billiard’s size has to be
smaller than the electronic mean free path. Also, type-(ii)
disorder will be irrelevant if the fluctuations in the Rashba
coefficient α are much smaller than its average value. The
thus defined clean limit is certainly within reach of cur-
rent nanofabrication technology [12] where typical values
of the mean free path routinely exceed several microns
and Rashba spin splitting is large. However, most of our
results presented in this study remain valid for sufficiently
weak disorder such that its bandwidth Γr is smaller than
the spin-orbit energy scale ∆so. Furthermore, the singu-
larities found in the DOS at (small) negative energies will
be washed out only for Γr >

√
εso �

2/(mR2).
In conclusion, we have presented a study of electron

billiards with spin-dependent dynamics due to Rashba
spin splitting. Semi-classical results for the spectrum agree
well with exact quantum calculations for circular bil-
liards, and we find interesting properties of negative-
energy states, including a finite spin projection in the out-
of-plane direction.
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